Proximinal and Strongly Proximinal Subspaces of Finite codimension
نویسنده
چکیده
Let X be a normed linear space. We will consider only normed linear spaces over R (Real line), though many of the results we describe hold good for n.l. spaces over C (the complex plane). The dual of X, the class of all bounded, linear functionals on X, is denoted by X∗. The closed unit ball of X is denoted by BX and the unit sphere, by SX . That is, BX = {x ∈ X : ‖x‖ ≤ 1} and SX = {x ∈ X : ‖x‖ = 1}.
منابع مشابه
Strongly Proximinal Subspaces in Banach Spaces
We give descriptions of SSDand QP -points in C(K)-spaces and use this to characterize strongly proximinal subspaces of finite codimension in L1(μ). We provide some natural class of examples of strongly proximinal subspaces which are not necessarily finite codimensional. We also study transitivity of strong proximinal subspaces of finite codimension.
متن کاملPROXIMINAL SUBSPACES Of A(K) Of FINITE CODIMENSION
We study an analogue of Garkavi’s result on proximinal subspaces of C(X) of finite codimension in the context of the space A(K) of affine continuous functions on a compact convex set K. We give an example to show that a simple-minded analogue of Garkavi’s result fails for these spaces. When K is a metrizable Choquet simplex, we give a necessary and sufficient condition for a boundary measure to...
متن کاملStrong proximinality and intersection properties of balls in Banach spaces
We investigate a variation of the transitivity problem for proximinality properties of subspaces and intersection properties of balls in Banach spaces. For instance, we prove that if Z ⊆ Y ⊆ X, where Z is a finite co-dimensional subspace of X which is strongly proximinal in Y and Y is an M -ideal in X, then Z is strongly proximinal in X. Towards this, we prove that a finite co-dimensional proxi...
متن کاملProximinality in generalized direct sums
We consider proximinality and transitivity of proximinality for subspaces of finite codimen-sion in generalized direct sums of Banach spaces. We give several examples of Banach spaces where proximinality is transitive among subspaces of finite codimension. 1. Introduction. Let X be a Banach space and let Y be a closed subspace of X. We recall that Y is said to be a proximinal subspace of X if f...
متن کاملSemi-continuity of Metric Projections in ∞-direct Sums
Let Y be a proximinal subspace of finite codimension of c0. We show that Y is proximinal in ∞ and the metric projection from ∞ onto Y is Hausdorff metric continuous. In particular, this implies that the metric projection from ∞ onto Y is both lower Hausdorff semi-continuous and upper Hausdorff semi-continuous.
متن کامل